

Legumes for sheep and beef systems

Derrick Moot

Introduction

- Drivers of climate change
- Agricultural responses
- Global issues local response
- Production results of legume systems change
- Financially, socially, environmentally resilient
- Hill country development

Why legumes for GHG mitigation?

CO₂ at Mauna Loa, Hawaii

Global energy supply

Redrawn from: https://ourworldindata.org/energy-production-and-changing-energy-sources. Accessed: 2/10/2019. Based on data sourced from Smil 2017. https://vaclavsmil.com/2016/12/14/energy-transitions-global-and-national-perspectives-second-expanded-and-updated-edition/; https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

Ice sheet losses 2002-2017

(Anomalies relative to April 2002)

Energy consumption per capita

Global population (billions: 1965-2018 FAOStat)

Data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources Accessed 2/10/2019; Smil 2017;

Deforestation or Intensification?

Impact of G x E x M

Redrawn from: https://ourworldindata.org/grapher/global-land-spared-as-a-result-of-cereal-yield-improvements. Accessed: 4/10/2019. Based on data sourced from: https://data.worldbank.org/data-catalog/world-development-indicators. Accessed: 18/7/2017.

Dairying in Canterbury

- 3.5 cows per ha
- 780 cows per herd

Nitrogen applied in NZ

CO₂ emitted in production of our N

Growth rates (2 year mean)

Growth rates (2 year means)

The Nitrogen gap

Same rate of evapotranspiration – inefficient water use!

Growth rates (2 year means)

Legume based pastures

- Limited water supply
- N to make plants grow!
- Meet animal demand (lactation)
- Minimize impact on air, soil, water
- Productive and profitable
- Socially acceptable
- Reduce GHG emissions

Legume dominant

Photo: DP Monks Lincoln University Nitrogen fixation 25-30 kg N/t DM

Ashley Dene 9 Jan 2015

New Zealand's specialist land-based university

Foetal lambs vs. mating weight

CH₄ reduced by faster LWG

Energy requirement (MJ ME) for lamb growth from 25 to 35 kg liveweight

Lamb growth rate (g/hd/d)	Energy per lamb per day	Days on farm	Energy consumed per lamb
100	13	100	1300
200	17	50	850 (↓53%)
300	22	33	726 (↓79%)

MJ ME: megajoules of metabolisable energy

Spring grazing at 'Bonavaree', Marlborough

2011/12 DM production

Metabolisable energy of lucerne

High numbers for 7-10 days

Intensification allows afforestation

Pathway to change

Implement a new technology (e.g. lucerne grazing) Output Plateau = system_optimised Tincremental change e. g. cultivar, fertilizer,

System optimisation

Time

Output

Pathway to change

Time

A story of change

Dave (Gundy) & Lisa Anderson

Old System

- Set-stocked
- Constant grass chasing
- Hill country in decline
- 100 day supplement winter feeding
- Peak feed demand and supply misaligned

Pasture supply & Animal demand

Landscape farming – Bog Roy Station

Getting Results

Landscape farming

Measuring, Monitoring & Analysing

Ewe flock performance

kg lamb weaned = number of lambs x weaning weight

Key Drivers are:

Ewe Performance

- Scanning %
- Lamb wastage %
- Lambing %

Lamb Performance

- Lamb growth rate
- Lamb weaning weight

Change in LWt produced at Bog Roy

Mean daily lamb growth rate

New Zealand's specialist land-based university

Income and lamb sale weights over six years at Bog Roy Station

Year	Average lamb value (\$/hd)	Total lamb income (\$)	Average sale LWt (kg)	Average LWt value (¢/kg)
	· · · · · · · · · · · · · · · · · · ·	```		
2012/13	73.97	236,409	31.5	234
2013/14	69.94	238,503	29.2	239
2014/15	74.12	256,911	31.6	234
2015/16	99.97	337,499	39.6	252
2016/17	117.21	436,956	39.4	297
2017/18	154.78	623,074	41.5	371

Transformational change at Bog Roy

- Change to lucerne grazing priority
- Increased per head performance of ewes
- Increased dry matter grown with new lucerne
- Less winter feed made
- Weaned lambs sold at heavier weights
- Hill country improved by developing flats

Hill country development - Mid Cant.

New Zealand's specialist land-based university

Legume/herb mixes for hill country New Zealand's specialist land-based university

Regenerative or Intensive CO₂ + CH₄

Mid Canterbury

Red clover

- Short lived perennial 2-3 years disease
- With white clover and timothy finishing pasture ?
- 8 kg red, 2 kg white 2 kg timothy no ryegrass!
- Sowing date and depth
- Higher residuals than perennial ryegrass
- Rotational graze (6 weeks 15 to 3 cm)
- Overdrill perennial ryegrass in Year 3
- Summer animal production wet lucerne!
 New Zealand's specialist land-based university

Subterranean Clover

- Large seed, 10x Wc therefore 10x sowing rate
- Winter annual autumn sow soil temp. <11°C.
- Rapid but variable germination with rainfall from Jan-May
- When can seedlings be grazed in autumn?
- How to maximize summer seed set

Seasonal clover growth

Seedling Development

Seedling development

White clover (486⁰ Cd)

Sub. clover (434^oCd)

main stem trifoliate leaf

axillary bud with one emerged leaf

Direct drill before rain Initial population for seed build up

Autumn Management in later years (200 seedlings/m² in pasture)

Lincoln
University
Fe Whate Wandka o Adroki
ADTEAROA- NEW ZEALAND

- High strikes after extended hot periods
 - bare ground for seedlings to establish in
 - high temperatures break dormancy
- January rains are often false break
 - seedlings die (March is usual)
- Amount of cover in autumn is crucial

Dry matter yields

Uncultivated – grazing only – no seed...

Summary: How we prep a block to maximise sub-clover

- Grazing pressure in Jan/Feb to remove dry clumpy grass (cows, ewes)
- Autumn rain = strike.
 Leave it until 5 trifoliate
 leaves. Can graze after
 this.
- Mid-winter: strip graze with ewes behind wire (clover carpet)

Before/after summer graze

May: watch it grow

June/July EAT IT

Strip graze hard 22 June to mid-August with twinning ewes

You have to like winter break feeding

Keeps you fit!

Reap the benefits in the following years. You probably only need to repeat this every 10-15 years or so.

Over 560 ha Tempello Corrie area

In poor price year with \$4.40/kg CW and \$1.80/kg store ... \$40,000 ahead if lambs 7 kg heavier at weaning.

Tonnes meat from 60 to 76 tonnes despite fewer ewes.

Southern Wairarapa = Summer dry

Sub clover 'Antas' drilled into pasture

High clover but too short?

Generalised relationship between pasture herbage mass and live weight gain of animals

Sheep numbers in New Zealand

Which legume drives your system?

- White set stocked small leaved persistent
- Red short lived, high yields rotational graze
- Lucerne- free draining with ewes and lambs
- Annuals = sub on dry faces (2-3 months dry)
- Subdivision, super (S), seed, stock 4 s's!

California - average lucerne yield

(USDA Ag Statistics)

Lucerne Objectives

- Understand plant responses to the environment
- Use that information to design management practices
- Determine the influence of genotype
- Understand impacts on yield and quality

Growth:

is dry matter accumulation as a result of light interception and photosynthesis

Development:

is the 'age' or maturity of the regrowth crop e.g. leaf appearance, flowering

Growth and development are both influenced by environmental signals

Vegetative growth

Partitioning to roots

Spring WUE

Seasonal grazing management

Spring

- 1st rotation aided by root reserves to produce high quality vegetative forage.
- can graze before flowers appear (~1500 kg DM/ha) ideally ewes and lambs but

Growing point at the top of the plant

New Zealand's specialist land-based university

TEMPELLO	2001 Corrie/Poll Dorset	2003 Corrie/Poll Dorset	2007 Corrie/Poll Dorset	2016 90% Corrie Flock *
Ewe tup weight	63	65	71	70
MA scanning %	145%	148%	165%	178%
2T & MA Lambing %	128%	128%	138%	135%
Lamb growth rate pre-wean (g/day)	250	374	345	295
Average lamb weaning weight	27	30.9	33	35
Lamb weight/ewe weaned kg	34.5	39.5	45.5	47.25
% Prime at weaning (>32 kg)	50%	75%	85%	89%
SU wintered/ha	8.2			11.5
		D	ata supplied by D & J Grigg, Te	empello, Marlborough

References

- Anderson, D., Anderson, L., Moot, D. J. and Ogle, G. I. 2014. Integrating lucerne (*Medicago sativa* L.) into a high country merino system. *Proceedings of the New Zealand Grassland Association*, **76**, 29-34.
- Brown, C. 1990. An integrated herbage system for Southland and South Otago. Proceedings of the New Zealand Grassland Association, 52, 119-122.
- Brown, H. E. and Moot, D. J. 2004. Quality and quantity of chicory, lucerne and red clover production under irrigation. *Proceedings of the New Zealand Grassland Association*, **66**, 257-264.
- Brown, H. E., Moot, D. J., Lucas, R. J. and Smith, M. 2006. Sub clover, cocksfoot and lucerne combine to improve dryland stock production. *Proceedings of the New Zealand Grassland Association*, **68**, 109-115.
- Costello, T. and Costello, A. 2003. Subterranean clover in North Canterbury sheep pastures. *In:* D. J. Moot (ed). Legumes for Dryland Pastures. Proceedings of a New Zealand Grassland Association (Inc.) Symposium held at Lincoln University, New Zealand, 18-19 November 2003. Wellington, New Zealand: New Zealand Grassland Association. Grassland Research and Practice Series, **Vol. 11**, 189-192.
- Evans, L. T. 1998. Feeding the Ten Billion: Plants and Population Growth. U.K.: Cambridge University Press. 264 pp.
- Fields, R., Moot, D. J. and Barrell, G. 2017. Identifying oestrogenic lucerne crops and premating ewe management. Available from:

 <a href="http://www.lincoln.ac.nz/research/
- Kerr, P. 2010. 400 plus a guide to improved lamb growth. New Zealand Sheep Council in association with WoolPro and Meat New Zealand. 107 pp.
- Ledgard, S. F. 2017. Assessing the environmental impact of sheep production. *In:* J. Greyling (ed). Achieving sustainable production of sheep. Cambridge, United Kingdom: Burleigh Dodds Science Publishing Limited, 407-430.
- Lucas, R. J., Smith, M. C., Jarvis, P., Mills, A. and Moot, D. J. 2010. Nitrogen fixation by subterranean and white clovers in dryland cocksfoot pastures. *Proceedings of the New Zealand Grassland Association*, **72**, 141-146.
- Mills, A., Moot, D. J. and Jamieson, P. D. 2009. Quantifying the effect of nitrogen of productivity of cocksfoot (*Dactylis glomerata* L.) pastures. *European Journal of Agronomy*, **30**, 63-69.
- Mills, A., Moot, D. J. and McKenzie, B. A. 2006. Cocksfoot pasture production in relation to environmental variables. *Proceedings of the New Zealand Grassland Association*, **68**, 89-94.
- Moot, D. J., Anderson, D., Anderson, L. and Pollock, K. M. 2018. Problems and solutions for High Country sheep farmers in New Zealand. *Proceedings of the XVe European Society for Agronomy Congress. Geneva, Switzerland: August 27-31 2018. Abstract book: PS-9.3-02. p 82.*

References (cont).

- Moot, D. J., Anderson, P. V. A., Anderson, L. J. and Anderson, D. K. 2019. Animal performance changes over 11 years after implementing a lucerne grazing system on Bog Roy Station. *Journal of New Zealand Grasslands*, **81**, XXX-XXX.
- Moot, D. J., Black, A. D., Scott, W. R. and Richardon, J. 2003a. Leaf development and dry matter production of subterranean lover cultivars in relation to autumn sward management. *In:* D. J. Moot (ed). Legumes for Dryland Pastures Proceedings of a New Zealand Grassland Association Inc Symposium held at Lincoln University, 18-19 November, 2003. Christchurch: New Zealand Grassland Association, 193-200.
- Moot, D. J., Brown, H. E., Teixeira, E. I. and Pollock, K. M. 2003b. Crop growth and development affect seasonal priorities for lucerne management. . *In:* D. J. Moot (ed). Legumes for Dryland Pastures Proceedings of a New Zealand Grassland Association Inc Symposium held at Lincoln University, 18-19 November, 2003. Christchurch: New Zealand Grassland Association, 201-208.
- Moot, D. J., Brown, H. E., Pollock, K. and Mills, A. 2008. Yield and water use of temperate pastures in summer dry environments. *Proceedings of the New Zealand Grassland Association*, **70**, 51-57.
- New Zealand Fertiliser Manufacturers' Research Association. 2015. Annual update (New Zealand Fertiliser Manufacturers' Research Association). 15 pp. Date Accessed: 5/5/2011. http://www.fertresearch.org.nz/resource-centre/annual-updates. Last Updated: Dec 2009. Data post 2009 Pers. Comm.
- Olykan, S. T., Lucas, R. J., Nicholson, D. J., Doscher, C. and Moot, D. J. 2019. Maximising the subterranean clover content on a summer-dry Wairarapa hill-country farm through grazing management. *Journal of New Zealand Grasslands*, **81**, XXX-XXX.
- Richardon, J. 2003. Phenology and early growth of subterranean and balansa clovers compared with white clover. Hons. Dissertation, Lincoln University, New Zealand. 121 pp.
- Saunders, C., Barber, A. and Taylor, G. 2006. Food Miles Comparative energy/emissions. Performance of New Zealand's agriculture industry. *Lincoln University Agribusiness & Economics Research Unit (AERU)*. **No. 285**. pp. 105.
- Statistics New Zealand. 2018. InfoShare: Variable by Regional Council. Stats NZ,http://archive.stats.govt.nz/infoshare/SelectVariables.aspx?pxID=42e35cfd-dcc5-45ed-864a-cc7e261146fd.
- Thomas, R. G. 2003. Comparative growth forms of dryland forage legumes. *In.* Legumes for dryland pastures. Proceedings of a New Zealand Grassland Association. Palmerston North New Zealand: New Zealand Grassland Association, 19-25.
- van Ittersum, M. K. 2011. Future Harvest: the fine line between myopia and utopia. *In:* Inaugural lecture upon taking up the post of Personal Professor of Plant Production Systems at Wageningen University on 12 May 2011. (Wageningen University: Wageningen University, 34 pp. Online: http://edepot.wur.nl/169680.
- Wiese, D. N., Yuan, D. N., Boening, C., Landerer, F. W. and Watkins, M. M. 2016. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent HDR Water Height RL05M.1 CRI Filtered Version 2. PO.DAAC, ed.). CA, USA. http://dx.doi.org/10.5067/TEMSC-2LCR5. Data accessed 1/10/2019. Website (https://climate.nasa.gov/vital-signs/ice-sheets/) last updated by the Earth Science Communications Team at NASA's Jet Propulsion Laboratory | California Institute of Technology on 23/9/2019.

External Data Sources

Slide 3:

CO₂ at Muana Loa, Hawaii. Dr. Pieter Tans, NOAA/ESRL (<u>www.esrl.noaa.gov/gmd/ccgg/trends/</u>) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/). (28/5/2019).

Slide 4:

Energy consumption (TWh) graph data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources. Accessed 2/10/2019. Original graph data derived from: Vaclav Smil (2017). Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy. Online: https://waclavsmil.com/2016/12/14/energy-transitions-global-and-national-perspectives-second-expanded-and-updated-edition/; https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

Slide 5:

NASA. 2019. Ice mass measurement by NASA's GRACE satellites. https://climate.nasa.gov/vital-signs/ice-sheets/; Wiese et al. 2016.

Slide 6:

Data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources Accessed 2/10/2019; Smil 2017; https://www.fao.org/faostat/en/#data/OA Accessed 4/10/2019. Regression equation fitted by DPR Team, Lincoln University.

Slide 7/8:

Recreated from Evans 1998, van Ittersum 2011 & FAOSTAT 2019. FAOSTAT. 2019. Global population, rice and wheat yields, N fertiliser consumption, Irrigated land area 1961-2018 sourced from: http://www.fao.org/faostat/en/#data/OA. Accessed 4/10/2019. (some points removed for clarity. General trend lines added by eye DPR Team, Lincoln University).

Slide 9;

Redrawn from: https://ourworldindata.org/grapher/global-land-spared-as-a-result-of-cereal-yield-improvements . Accessed: 4/10/2019. Based on data sourced from: https://data.worldbank.org/data-catalog/world-development-indicators. Accessed: 18/7/2017.